Mewar University
Chittorgarh

Lab Manual

Object Oriented Programming Lab

B.TECH. IV SEMESTER

Branch: Computer Science & Engineering

()

Mewar University

Knowledge to Wisdom

Session 2022-23

Departmentof Computer Science & Engineering
Mewar University, Chittorgarh
Chittorgarh, 312001

TABLE OF CONTENTS

S. No. Contents
1 Lab Rules
2 Instructions

List of Experiments

LAB RULES

Responsibilities of Users

Users are expected to follow some fairly obvious rules of conduct:

Always:

= Enter the lab on time and leave at proper time.

= Wait for the previous class to leave before the next class enters.

= Keep the bag outside in the respective racks.

= Utilize lab hours in the corresponding.

= Turn off the machine before leaving the lab unless a member of lab staff has specifically

told you not to do so.

Leave the labs at least as nice as you found them.

If you notice a problem with a piece of equipment (e.g. a computer doesn't respond) or the
room in general (e.g. cooling, heating, lighting) please report it to lab staff immediately.

Do not attempt to fix the problem yourself.

= Don't harm any equipment.

= Do notadjust the heat or air conditioners. If you feel the temperature is not properly set,
inform lab staff; we will attempt to maintain a balance that is healthy for people and
machines.

= Do not attempt to reboot a computer. Report problems to lab staff.

= Do not remove or modify any software or file without permission.

= Do notremove printersand machines from the network without being explicitly told to do
so by lab staff.

= Don't monopolize equipment. If you're going to be away from your machine for more
than 10 or 15 minutes, log out before leaving. This is both forthe security of your account,
and to ensure that others are able to use the lab resources while you are not.

= Don’tuse internet, internet chat of any kind in your regular lab schedule.

= Do not download or upload of MP3, JPG or MPEG files.

= No games are allowed in the lab sessions.

= No hardware including USB drives can be connected or disconnected in the labs without
prior permission of the lab in-charge.

= No food ordrink is allowed in the lab or near any of the equipment. Aside from the fact
that it leaves a mess and attracts pests, spilling anything on a keyboard or other piece of
computer equipment could cause permanent, irreparable, and costly damage. (and in fact
has) If you need to eat or drink, take a break and do so in the canteen.

= Don’t bring any external material in the lab, except your lab record, copy and books.

= Don’t bring the mobile phones in the lab. If necessary, then keep them in silence mode.

= Please be considerate of those around you, especially in terms of noise level. While labs

are a natural place for conversations of all types, kindly keep the volume turned down.

If you are having problems or questions, please go to either the faculty, lab in-charge or the lab
supporting staff. They will help you. We need your full support and cooperation for smooth

functioning of the lab.

INSTRUCTIONS

Before entering in the lab

All the students are supposed to prepare the theory regarding the next experiment.

Students are supposed to bring the practical file and the lab copy.
Previous programs should be written in the practical file.

All the students must follow the instructions, failing which he/she may not be allowed in the lab.

While working in the lab

Adhere to experimental schedule as instructed by the lab in-charge.

Get the previously executed program signed by the instructor.

Get the output of the current program checked by the instructor in the lab copy.

Each student should work on his/her assigned computer at each turn of the lab.

Take responsibility of valuable accessories.

Concentrate on the assigned practical and do not play games

If anyone caught red handed carrying any equipment of the lab, then he/she will have to face

serious consequences.

LIST OF EXPERIMENTS

SR. No Experiments

1 Write a C++ program to display Names, Roll No., and grade of 3 students
who have appeared in the examination. Declare the class of name, roll no.,
and grade. Create an array of class objects. Read and display the contents off
the array.

2 Write a C++ program to declare struct. Initialize and display contents of
member

3 Write a C++ program to declare a class. Declare pointer to class. Initialize
and display the contents of the class members

4 Given that EMPLOYEE class contains following members: data members:
Employee number, Employee name, Basic, DA, IT, Net Salary, and print
data members

5 Write a C++ program to read the data of N employee and compute the net
salary of each employee (DA=52% of basic and 1T=30% of gross salary).

6 Write a C++ to illustrate the concepts of console I/O operations

7 Write a C++ program to use scope resolution operator. Display the varioug
values of the same variables declared at different scope levels.

8 Write a C++ program to allocate memory using new operator.

9 Write a C++ program to create multilevel inheritance

10 Write a C++ program to create an array of pointers. Invoke functions using
array objects

11 Write a C++ program to use pointer for both base and derived classes and

call the member function. Use virtual keyword

EXPERRIMENT -l
Creation of Student Class

/I C Program to Insert an element
#include <iostream>
using namespace std;

class Student {
public:
string name;
int rolINo;
char grade;

/l Function to input student details
void inputDetails() {

cout << "Enter name: ";

cin >> name;

cout << "Enter Roll No: ";

cin >> rolINo;

cout << "Enter Grade: ";

cin >> grade;

¥

/l Function to display student details
void displayDetails() {
cout << "Name: " << name << ", Roll No: " << rolINo << ", Grade: " << grade << endl;

+

int main() {
const int SIZE = 3;
Student students[SIZE]; // Array of Student objects

/I Input details for each student
cout << "Enter details for " << SIZE << " students:" << endl;
for(inti = 0; i < SIZE; i++) {
cout << "Student " << (i+1) << ™" << endl;
students[i].inputDetails();

}

/I Display details for each student

cout << "\nDisplaying Student Details:" << endl;

for(inti=0; i < SIZE; i++) {
students[i].displayDetails();

return O;

Output

Enter details for 3 students:
Enter name: Sunil

Enter Roll No: 12122
Enter Grade: A

Enter name: Rohit

Enter Roll No: 12324
Enter Grade: B

Enter name: Akshay

Enter Roll No: 12432
Enter Grade: C

Displaying Student Details:

Name: Sunil, Roll No: 12122, Grade: A
Name: Rohit, Roll No: 12324, Grade: B
Name: Akshay, Roll No: 12432, Grade: C

EXPERIMENT -2

Declaration and Initialization of Structure

#include <iostream>
using namespace std;

// Declaration of the struct
struct Person {

string name;

int age;

char gender;

¥

int main() {
/I Initialize an instance of Person
Person personl = {"John Doe", 30, '‘M'};

/l Display the contents of personl

cout << "Person Details:" << endl;

cout << "Name: " << personl.name << endl;
cout << "Age: " << personl.age << endl;

cout << "Gender: " << personl.gender << endl;

return O;

Output

Person Details:
Name: John Doe
Age: 30

Gender: M

EXPERRIMENT -3
Declaration of Class with Pointer variable

#include <iostream>
using namespace std;

Il Declaration of the class
class Student {
public:

string name;

int age;

/I Constructor to initialize members
Student(string n, int a) : name(n), age(a) {}

/l Function to display student details
void display() {
cout << "Student Details:" << endl;
cout << "Name: " << name << endl;
cout << "Age: " << age << endl;

h
int main() {
/I Creating an instance of Student dynamically

Student* studentPtr = new Student("Alice", 20);

// Display the contents using the pointer
studentPtr->display();

Il Freeing the allocated memory
delete studentPtr;

return O;

Output:-

Student Details:
Name: Alice
Age: 20

EXPERRIMENT -4

Class creation of Employee with basic salary

#include <iostream>
using namespace std;
class EMPLOYEE {
private:

int empNumber;
string empName;

float basic, da, it, netSalary;

public:
// Constructor to initialize the data members
EMPLOYEE(int number, string name, float basicSalary, float daRate, float itRate)
:empNumber(number), empName(name), basic(basicSalary), da(daRate), it(itRate) {

calculateNetSalary(); // Calculate Net Salary during object creation

// Function to calculate Net Salary
void calculateNetSalary() {
// Assuming DA is a percentage of Basic and IT is a deduction amount

float daAmount = (basic * da) / 100.0;

netSalary = basic + daAmount - it; // Net Salary calculation

// Function to print employee details
void printDetails() {
cout << "Employee Number: " << empNumber << end];

cout << "Employee Name: " << empName << end|;

cout << "Basic Salary: " << basic << endl;

cout << "DA:" << da << "%" << endl;
cout << "IT:" << it << endl;

cout << "Net Salary: " << netSalary << end|;

int main() {

// Creating an EMPLOYEE object with example data

EMPLOYEE emp1(123, "John Doe", 50000.0, 10.0, 5000.0);

// Displaying the employee details

emp1.printDetails();

return O;
}
Output
Employee Number: 123
Employee Name: John Doe
Basic Salary: 50000
DA: 10%
IT: 5000

Net Salary: 50000

EXPERIMENT -5

Computation of Employee salary with class members
#include <iostream>
#include <vector>
using namespace std;

class Employee {
public:
int empNumber;
string empName;
float basic, da, it, grossSalary, netSalary;

// Function to input employee details
void inputDetails(int number) {
empNumber = number;
cout << "Enter Employee Name: ";
cin >> empName;

cin >> basic;

// Function to calculate DA, IT, and Net Salary

void calculateSalaries() {
da = basic * 0.52; // DA is 52% of basic
grossSalary = basic + da;
it = grossSalary * 0.30; // IT is 30% of gross salary

netSalary = grossSalary - it;

/I Function to print employee details

void printDetails() {
cout << "Employee Number: " << empNumber << endl;
cout << "Employee Name: " << empName << endl;
cout << "Basic Salary: $" << basic << endl;
cout << "DA: $" << da << " (52% of Basic)" << endl;
cout << "Gross Salary: $" << grossSalary << endl;
cout << "IT: $" << it << " (30% of Gross)" << endl;
cout << "Net Salary: $" << netSalary << endl;
cout <<

}
+

int main() {
int N;
cout << "Enter the number of employees: *;
cin >> N;

vector<Employee> employees(N); // Create a vector of Employee objects

/I Input and calculate details for each employee

for (inti=0;i<N; i++) {
cout << "Enter details for employee " << (i + 1) << ™" << endl;
employees[i].inputDetails(i + 1);
employees[i].calculateSalaries();

// Display details for each employee
cout << "\nEmployee Details and Net Salaries:" << endl;

employees[i].printDetails();
}

return O;

Enter the number of employees: 2
Enter details for employee 1:
Enter Employee Name: Akshay
Enter Basic Salary: 70000
Enter details for employee 2:
Enter Employee Name: Rohit
Enter Basic Salary: 50000

Employee Details and Net Salaries:
Employee Number: 1

Employee Name: Akshay

Basic Salary: $70000

DA: $36400 (52% of Basic)
Gross Salary: $106400

IT: $31920 (30% of Gross)
Net Salary: $74480

Employee Number: 2
Employee Name: Rohit
Basic Salary: $50000

DA: $26000 (52% of Basic)
Gross Salary: $76000

IT: $22800 (30% of Gross)
Net Salary: $53200

EXPERIMENT -6

I/O operation implementation with class

#include <iostream>

#include <string> // Include for using the string class

using namespace std;

int main() {
// Variables to hold user input
string name;
int age;

// Output operations using cout

cout << "Enter your name: ",

// Input operation using getline to read a line of text
getline(cin, name);

cout << "Enter your age: ;
// Input operation using cin

cin >> age;

// More output operations using cout

cout << "Hello, " << name << << endl;

cout << "You are " << age << "years old." << end];
// Nustrating formatted output

double pi = 3.141592653589793;

cout << "Unformatted PI: " << pi << endl;

// Set precision for floating-point output
cout.precision(3);

cout << "Formatted PI (3 decimal places): " << pi << end|;

// Demonstrating error output using cerr

cerr << "This is an error message example using cerr" << end|;

// Demonstrating logging output using clog
clog << "This is a log message example using clog" << end|l;

return O;

}
Output:
Enter your name: Akshay
Enter your age: 27
Hello, Akshay!
You are 27 years old.
Unformatted PI: 3.14159
Formatted PI (3 decimal places): 3.14
This is an error message example using cerr

This is a log message example using clog

EXPERIMENT -7

Scope Resolution Operatorin C++

#include <iostream>
using namespace std;

int value = 10; // Global variable declaration

class Demo {
public:
static int value; // Static class member variable declaration
void display() const {
int value = 30; // Local variable declaration inside a method
cout << "Local value in display(): " << value << endl;
cout << "Static value in Demo class: " << Demo::value << endl;
cout << "Global value: " << ::value << endl;
}
¥

int Demo::value = 20; // Definition of static class member variable
int main() {
Demo demo;
demo.display();
int value = 40; // Local variable in main()
cout << "Local value in main(): " << value << endl;
cout << "Static value in Demo class accessed in main(): " << Demo::value << endl;
cout << "Global value accessed in main(): " << ::value << endl;

return O;

}

Output:

Local value in display(): 30

Static value in Demo class: 20

Global value: 10

Local value in main(): 40

Static value in Demo class accessed in main(): 20

Global value accessed in main(): 10

EXPERIMENT -8

Dynamic Memory Allocation with new Operator

#include <iostream>
using namespace std;

class Sample {

public:
Sample() { cout << "Sample object created.\n"; }
~Sample() { cout << "Sample object destroyed.\n"; }

int main() {
/I Allocate memory for a single integer
int* ptr = new int(5); // Initializes the memory with 5
cout << "Value of *ptr: " << *ptr << endl;

/I Deallocate memory for the integer
delete ptr;
ptr = nullptr; // Good practice to assign nullptr after deleting

/I Allocate memory for an object of Sample
Sample* samplePtr = new Sample();

/I No need to explicitly call the constructor, new does that

/I Deallocate memory for the object
delete samplePtr;
samplePtr = nullptr;

/I Allocate memory for an array of integers
int* arrayPtr = new int[3] {1, 2, 3}; // Initializes the array

cout << "Array elements: ";
for (inti=0;i<3;++i) {
cout << arrayPtr[i] << " ";

}

cout << endl;

/I Deallocate memory for the array
delete[] arrayPtr;

arrayPtr = nullptr;

return O;

OUTPUT

Value of *ptr: 5

Sample object created.
Sample object destroyed.
Array elements: 12 3

EXPERIMENT -9

Multilevel Inheritance

#include <iostream>
using namespace std;

// Base class
class BaseClass {
public:
void displayBase() {
cout << "Displaying Base class content.” << endl;
}
3

/I Intermediate class derived from BaseClass
class IntermediateClass : public BaseClass {
public:
void displaylntermediate() {
cout << "Displaying Intermediate class content.” << endl;

}
}

/I Derived class derived from IntermediateClass
class DerivedClass : public IntermediateClass {
public:
void displayDerived() {
cout << "Displaying Derived class content.” << endl;
}
3

int main() {
DerivedClass obj;

/I Object of DerivedClass can access members of all the classes in the hierarchy
obj.displayBase(); /I Accessing Base class member
obj.displayIntermediate(); // Accessing Intermediate class member
obj.displayDerived(); /I Accessing Derived class member

return O;

OUTPUT

Displaying Base class content.
Displaying Intermediate class content.
Displaying Derived class content

EXPERIMENT 10

Invoke functions using array objects

#include <iostream>
using namespace std;

class Sample {
public:
int id;

Sample(int id): id(id) {} // Constructor with an initializer list

void display() {
cout << "Displaying Sample object with ID: " << id << endl;
¥
j3

int main() {
const int size = 3; /I Size of the array of pointers
Sample* sampleArray[size]; // Array of pointers to Sample objects

/I Dynamically allocate the Sample objects and store their pointers in the array
for(inti=0; i <size; ++i) {
sampleArray[i] = new Sample(i + 1); // Object IDs will be 1, 2, 3

/I Invoke the display function using each object in the array
for(inti=0; i <size; ++i) {

sampleArray[i]->display();
}

/I Don't forget to delete the dynamically allocated objects to avoid memory leaks
for(inti = 0; i <size; ++i) {
delete sampleArray[i];

}

return O;

INPUT/ OUTPUT
Displaying Sample object with I1D: 1

Displaying Sample object with ID: 2
Displaying Sample object with ID: 3

EXPERIMENT- 11

Calling the function Using Virtual keyword
#include <iostream>
using namespace std;

// Base class
class Base {
public:
virtual void show() { // Virtual function
cout << "Base class show" << endl;

}

I/l Includinga virtual destructor ensures that derived class destructors are called correctly
virtual ~Base() {
cout << "Base destructor" << endl;

}
j2

// Derived class
class Derived : public Base {
public:
void show() override { // Override the base class function
cout << "Derived class show" << endl;

}

~Derived() {
cout << "Derived destructor"” << endl;

b

b

int main() {
Base *basePtr; // Base class pointer
Derived derivedObj; // Derived class object

basePtr = &derivedODbj; // Pointing base class pointer to derived class object

/l Calls the function according to the type of object pointed to by basePtr, i.e., Derived

alalVi

basePtr->show();

// Because Base's destructor is virtual, deleting basePtr will correctly call Derived's
destructor first, then Base's destructor

//'1f you dynamically allocate memory, make sure to delete it to prevent memory leaks. For
this static allocation, it's not needed.

I/ delete basePtr;

return O;

OUTPUT

Derived class show
Derived destructor
Base destructor

